40 research outputs found

    Organic Corrosion Inhibitors

    Get PDF
    Organic corrosion inhibitors are one of the five ways, besides material selection, design, cathodic protection and coatings, to protect materials against corrosion. Corrosion is an ubiquitous phenomena that deteriorates all materials, metals, plastics, glass and concrete. The costs of corrosion are tremendous and amounts to 4.0% of gross domestic product (GDP) in USA. The similar losses of GDP are noted in all countries around the world. At this point of time, there is no way to completely stop the corrosion processes. Some new solutions can only slow this process. Organic corrosion inhibitors are widely used in industry because of their effectiveness at wide range of temperatures, compatibility with protected materials, good solubility in water, low costs and relatively low toxicity. Organic corrosion inhibitors adsorb on the surface to form protective film which displace water and protect it against deteriorating. Effective organic corrosion inhibitors contain nitrogen, oxygen, sulfur and phosphorus with lone electron pairs as well can contain structural moieties with π-electrons that interact with metal favoring the adsorption process. This review presents mechanisms and monitoring of corrosion, laboratory methods for corrosion study, relationship between structure and efficacy of corrosion inhibitions, theoretical approach to design new inhibitors and some aspects of biocorrosion

    Synthesis of Silver Nanoparticles with Gemini Surfactants as Efficient Capping and Stabilizing Agents

    No full text
    The scientific community has paid special attention to silver nanoparticles (AgNPs) in recent years due to their huge technological capacities, particularly in biomedical applications, such as antimicrobials, drug-delivery carriers, device coatings, imaging probes, diagnostic, and optoelectronic platforms. The most popular method of obtaining silver nanoparticles as a colloidal dispersion in aqueous solution is chemical reduction. The choice of the capping agent is particularly important in order to obtain the desired size distribution, shape, and dispersion rate of AgNPs. Gemini alkylammonium salts are named as multifunctional surfactants, and possess a wide variety of applications, which include their use as capping agents for metal nanoparticles synthesis. Because of the high antimicrobial activity of gemini surfactants, AgNPs stabilized by this kind of surfactant may possess unique and strengthened biocidal properties. The present paper presents the synthesis of AgNPs stabilized by gemini surfactants with hexadecyl substituent and variable structure of spacer, obtained via ecofriendly synthesis. UV-Vis spectroscopy and dynamic light scattering were used as analyzing tools in order to confirm physicochemical characterization of the AgNPs (characteristic UV-Vis bands, hydrodynamic diameter of NPs, polydispersity index (PDI))

    Synthesis, Structure and Antimicrobial Properties of Novel Benzalkonium Chloride Analogues with Pyridine Rings

    No full text
    Quaternary ammonium compounds (QACs) are a group of compounds of great economic significance. They are widely used as emulsifiers, detergents, solubilizers and corrosion inhibitors in household and industrial products. Due to their excellent antimicrobial activity QACs have also gained a special meaning as antimicrobials in hospitals, agriculture and the food industry. The main representatives of the microbiocidal QACs are the benzalkonium chlorides (BACs), which exhibit biocidal activity against most bacteria, fungi, algae and some viruses. However, the misuses of QACs, mainly at sublethal concentrations, can lead to an increasing resistance of microorganisms. One of the ways to avoid this serious problem is the introduction and use of new biocides with modified structures instead of the biocides applied so far. Therefore new BAC analogues P13–P18 with pyridine rings were synthesized. The new compounds were characterized by NMR, FT-IR and ESI-MS methods. PM3 semiempirical calculations of molecular structures and the heats of formation of compounds P13–P18 were also performed. Critical micellization concentrations (CMCs) were determined to characterize the aggregation behavior of the new BAC analogues. The antimicrobial properties of novel QACs were examined by determining their minimal inhibitory concentration (MIC) values against the fungi Aspergillus niger, Candida albicans, Penicillium chrysogenum and bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. The MIC values of N,N-dimethyl-N-(4-methylpyridyl)-N-alkylammonium chlorides for fungi range from 0.1 to 12 mM and for bacteria, they range from 0.02 to 6 mM

    Synthesis, FTIR, 13C-NMR and Temperature-Dependent 1H‑NMR Characteristics of Bis-naphthalimide Derivatives

    No full text
    Chemotherapy is still the most important method of cancer treatment. To make this method more effective and safe, new drugs to destroy cancer cells are needed. Some bis-naphthalimide derivatives show potential anticancer activity via an intercalation mechanism. A higher degree of DNA intercalation corresponds to better therapeutic effects. The degree of intercalation of naphthalimides depends on their structure, molecular dynamics and intermolecular interactions with DNA. In order to apply any active substance as a drug, its molecular dynamics as well as possible interactions with target molecules have to be examined in exhaustive details. This paper describes a practical preparation of some novel bis-naphthalimide derivatives with different functional groups and their FTIR and 1H- and 13C-NMR spectral characteristics. To determine the molecular dynamics of the obtained compounds the temperature, their 1H-NMR spectra were measured. It has been clearly proven in this paper that the unusual temperature-dependent 1H-NMR behavior of the aromatic protons of phthalimide derivatives, previously described in the literature as “hypersensitivity” and explained by n-π interactions and molecular motions of aromatic amide rings, is a result of temperature driven changes of the geometry of carbonyl groups

    Monomeric and gemini surfactants as antimicrobial agents - influence on environmental and reference strains

    No full text
    Quaternary ammonium salts (QAS) belong to surfactant commonly used both, in the household and in different branches of industry, primarily in the process of cleaning and disinfection. They have several positive features inter alia effectively limiting the development of microorganisms on many surfaces. In the present work, two compounds were used as biocides: hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) that belongs to the gemini surfactant (GS), and its single analogue - dodecyl(trimethyl)ammonium bromide (DTAB). Two fold dilution method was used to determine the minimum concentration of compounds (MIC) which inhibit the growth of bacteria: Staphylococcus aureus (ATCC 6538 and an environmental strain), Pseudomonas aeruginosa (ATCC 85327 and an environmental strain), and yeast Candida albicans (ATCC 11509 and an environmental strain). The viability of cells in liquid cultures with addition of these substances at ¼ MIC, ½ MIC and MIC concentrations were also determined. The obtained results show that DTAB inhibits the growth of bacteria at the concentration of 0.126-1.010 µM/ml, and gemini surfactant is active at 0.036-0.029 µM/ml. Therefore, GS is active at more than 17-70-fold lower concentrations than its monomeric analogue. Strains isolated from natural environment are less sensitive upon testing biocides than the references strains. Both compounds at the MIC value reduced the number of cells of all strains. The use of too low concentration of biocides can limit the growth of microorganisms, but often only for a short period of time in case of special environmental strains. Later on, they can adapt to adverse environmental conditions and begin to evolve defence mechanisms

    Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis

    No full text
    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6), synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages

    Quaternary Alkylammonium Conjugates of Steroids: Synthesis, Molecular Structure, and Biological Studies

    No full text
    The methods of synthesis as well as physical, spectroscopic (1H-NMR, 13C-NMR, and FT-IR, ESI-MS), and biological properties of quaternary and dimeric quaternary alkylammonium conjugates of steroids are presented. The results were contrasted with theoretical calculations (PM5 methods) and potential pharmacological properties (PASS). Alkylammonium sterols exhibit a broad spectrum of antimicrobial activity comparable to squalamine

    Gemini Alkyldeoxy-D-Glucitolammonium Salts as Modern Surfactants and Microbiocides: Synthesis, Antimicrobial and Surface Activity, Biodegradation

    Get PDF
    <div><p>Dimeric quaternary alkylammonium salts possess a favourable surface and antimicrobial activity. In this paper we describe synthesis, spectroscopic analysis, surface and antimicrobial activity as well as biodegradability of polymethylene-α,ω-bis(<i>N,N</i>-dialkyl-<i>N</i>-deoxy-D-glucitolammonium iodides), a new group of dimeric quaternary ammonium salts. This new group of gemini surfactants can be produced from chemicals which come from renewable sources. The structure of products has been determined by the FTIR and <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy. The biodegradability, surface activity and antimicrobial efficacy against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, <i>Candida albicans</i>, <i>Aspergillus niger</i> and <i>Penicillium chrysogenum</i> were determined. The influence of the number of alkyl chains and their lengths on surface and antimicrobial properties has been shown. In general, dimeric quaternary alkyldeoxy-D-glucitolammonium salts with long alkyl substituents show favourable surface properties and an excellent antimicrobial activity.</p></div
    corecore